Selection of Isolated DC-DC Converter for Low Power Applications with Current Double Rectifier

نویسندگان

  • Alagu Dheeraj
  • V. Rajini
چکیده

A high frequency, low voltage, high current DC-DC converter is most suitable for high speed electronic circuits like microprocessors, telecommunication networks etc. This paper presents the details regarding the selection of Isolated DC-DC converter for high current applications using Current Double Rectifier (CDR) among four isolated DC-DC Converters such as flyback, forward, push-pull and two switch forward converter. To increase the efficiency of the transformer, CDR is used at the output which has the property of one diode conduction drop, provides much higher conversion ratio without using high turns ratio, thereby reducing stress on the secondary side. All the above isolated converters like flyback, forward, push pull and two switch forward converters were designed and simulated and results were validated for 5V/10A at 100kHz switching frequency. For the same output power level Forward converter is found to be the most suitable among other isolated converters having minimum turns ratio and low leakage inductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Doubler Rectifier for High Power and Low Voltage DC/DC Converter Applications

The rectifier has important influence on a DC/DC converter’s characteristics including the efficiency, the output voltage ripple and the dynamic behavior. By analyzing the difference between the center trapped rectifier and the double current rectifier, this document explains and demonstrates the advantage of the current doubler rectifier for DC/DC converters with especially high power but low ...

متن کامل

An Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation

In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...

متن کامل

A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...

متن کامل

Design and Simulation of a New DC Power Supply Based on Dual Bridge Matrix Converter

A conventional high power DC power supply systems consist of a three-phase diode rectifier followed by a high frequency converter to supply loads at regulated DC voltage. These rectifiers draw significant harmonic currents from the utility, resulting in poor input power factor. In this paper, a DC power supply based on dual-bridge matrix converter (DBMC) with reduced number of switches is p...

متن کامل

Series-Loaded Resonant Converter DC-DC Buck Operating for Low Power

This paper presents the functions of Series-Loaded Resonant Converter (SLRC). Series Loaded Resonant DC-DC converter is a type of soft-switching topology widely known for providing improved efficiency. Zero voltage switching (ZVS) buck converter is more preferable over hard switched buck converter for low power, high frequency DC-DC conversion applications. Zero Voltage switching techniques wil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014